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Lattice effects in crystal evaporation 

I Pagonabmagat, J Villain, I Elkinani and M B Gordon 
DRFMC/SPSMS/MDN. Centre d‘Etudes NucMaires de Grenoble, 85X, F-38041 Grenoble, 
Cedex. France 

Received 20 July I993 

Abstract We study the dynamics of a stepped crystal surface during evaporation, using the 
classical model of Burton, Cabrera and Frank, in which the dynamics of the surface is represented 
as a motion of parallel, monatomic steps. The validity of the continuum approximation treated 
by Frank is checked against numerical calculations and simple, qualitative arguments. The 
continuum approximation is found ta suffer from limitations related, in particular, to the existence 
of angular points. These limitalions are often related to the adatom detachment rate which is 
higher on the lower side of each step than on the upper side (‘Schwoebel effect’). 

1. Introduction 

The study of the dynamics of a crystal surface under non-equilibrium conditions is an old 
subject, the interest of which was renewed in the last years due to modem experimental 
techniques, such as electron reflection microscopy [1,2], which allow a more detailed 
observation of dynamic phenomena of the surfaces both during evaporation and growth. 
Moreover, equilibrium is practically never reached, and even a surface which is apparently 
at equilibrium on a certain length-scale, will present non-equilibrium shapes at larger length- 
scales. Therefore, it is of interest to understand how these features can be formed, either 
during growth or during annealing. 

Burton, Cabrera and Frank [31 (BCD have developed a simple theory to describe the 
growth of a stepped, dislocation-free crystal surface. They wrote equations of motion for 
the steps. The purpose of the present article is to solve these equations for special cases 
corresponding to a given initial profile of the surface. 

When trying to solve the BCF equations, a possible approach is to make the continuum 
approximation. Then, as will be seen in section 2, it is possible to use a theorem discovered 
by Frank [4]. However, the continuum approximation is questionable if the slope of the 
surface is discontinuous. For that reason, the present work is focussed on the evaporation 
of surfaces which initially contain comers (figure I@)). 

Only evaporation will be considered here, in order to avoid problems due tonucleation 
of new terraces during growth. One can also notice that in situ study of surface dynamics 
is more easily performed under evaporation than under growth conditions [1,2]. In this 
paper we investigate, within the BCF theory, the evaporation of a defect-free surface made 
of parallel, but not equidistant, steps. Our main motivation is to test, in particular instances, 
the validity of the continuum approximation developed by Frank [4]. The continuum 
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( D I  n.1 n.2 ... 
Figure 1. (a) Profile of a uysral surface made of two semi-infinite half planes. ?he left-side 
surface corresponds to a high symmetj. plane. (b) Diagram of the movement of adatoms on 
temces, showing the probability of each event. Schwoebel effect is taken into account through 
the coefficients D' and D". 

approximation will be shown to fail when curvature changes abruptly at some place on 
the surface. In the original BCF paper, atoms detaching from a step were assumed to be 
emitted with equal probability from the upper and from the lower terrace. This will be 
called the symmetric case. However, as noticed by Ehrlich [5], a step may be partially 
rather than totally absorbing. Generally, one side is more absorbing than the other [6]. This 
is known as Schwoebel effect. 

We will consider solid surfaces made of parallel steps. The structure of the surface 
at time t is fully characterized by the positions x.(t) of the successive steps labelled by 
the index n = 1,2, . . . , as shown in figure I(a). The functions x,(t) satisfy the following 
equation, which follows from the BCF theory, appropriately modified to take into account 
the Schwoebel effect: 

i" = -q&" -&-I )  -%(.%+I - X").  (1.1) 

The expressions of q!(i) and ~ ~ ( 1 )  are derived in [7] and, for completeness, briefly 
re-derived in appendix A. The first one, 

gives the net flux of outgoing adatoms from a step to the upper terrace, and 

is the net flux of outgoing adatoms from a step to the lower terrace. In these expressions, 
po is the equilibrium density of adatoms on the high-symmetry surface at the appropriate 
temperature and vapour pressure, D is the surface diffusion constant of adatoms and l/ro 
is the evaporation probability of an adatom per unit time. F is zero in the cases addressed 
here, but it would be the beam intensity in the case of growth by molecular beam epitaxy. 
D' is the unit time probability of an adatom to stick to a step when it is just beside the step, 
and D" is the unit time probability of an adatom to stick to a step when it is just above that 
step (figure I@)). The situation where D' # D and D" # D will correspond to situations 
in which the sticking probability of adatoms to steps will depend on the terrace towards 
which they move. More specifically, we will call normal Schwoebel effect when particles 
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mainly move towards the upper terrace, D” << D, while the situation in which particles 
move towards the lower terrace will be named inverse Schwoebel effect. Finally, 

1 
K = -  

4% 

is the reciprocal of the average distance on which an adatom would diffuse on an infinite 
terrace before evaporating. This distance is always much larger than the interatomic spacing, 
taken to be the length unit throughout this work, while the time an adatom needs to diffuse 
along the interatomic distance is the unit time. Normal Schwoebel effect is known to produce 
instabilities during evaporation [8], but the present study is restricted to cases where no such 
instability occurs. 

As seen from (1.2) and (1.3), p!(Z) and pr(l) are proportional to 1 for small I and 
constant for large 1. In the symmetric case one has D’ = D” = D and, since K < 1, (1.2) 
and (1.3) reduce to the BCP formula 

The conditions of applicability of the BCF theory, which implies the stability of the step 
flow regime, are the following. 

(i) No dislocations should be present. Generally this implies that only a small part of the 
surface is observed, e.g. 0.01 cm x 0.01 cm for Si wafers 111. 

(ii) No surface vacancies should be formed on terraces. This implies that the temperature 
should not exceed a certain threshold, e.g. 1200K for Si(OO1) [9], although much higher 
for Si(l11) [lo]. 

( 5 )  The vicinal orientation should be stabie with respect to facet formation. 
(iv) The steps should not undergo instabilities, such as the one discovered by Bales and 

Zangwill [7] in the case of growth. 

In the next section, the continuum approximation of (1.1) will tie introduced and 
exploited. We will then focus our attention on the evaporation of a surface limited initially 
by two semi-infinite half planes as sketched in figure I@). One of them is assumed to 
be a high-symmetry surface and the other one is made of parallel steps. In section 3, the 
long-time behaviour of the solution of (1.1) will be derived analytically. In section 4, exact 
solutions will be derived for approximations of (1.1). Numerical solutions of (1.1) will be 
presented in section 5 and will be compared with the continuum approximation. Finally, 
more complicated initial profiles will be investigated in section 6, namely a periodic surface 
with grooves. In the discussion we summarize our main results, and technical details are 
worked out in the appendices. 

2. The continuum model and Frank construction 

In the continuum approximation, the step position x. is regarded as a continuous and 
generally differentiable function of the local surface height -n, also considered as a 
continuous variable z .  Therefore, x, -+ x(-z). Moreover, introducing the derivatives 
X’ = -ax/az, X” = a2x/az2 etc, and ( ~ ’ ( x ‘ )  = ap(x’)/ax’, and assuming x”’ and the 
further derivatives to be small, one can rewrite (1.1) as 

X” x,,, xlt2 

2 3 4 
x = -2@(x’) + -*‘(x‘) - -@’(x’) - -@”(x’) 
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where 

and rp’ and 9“ are the derivatives of rp. 

in (2.1). 
In this section, we consider the approximation obtained by keeping only the first term 

x = -2qqx’). (2.4) 
This approximation will be called the continuum approximation. It clearly fails near a 
corner, when x” is infinite. Moreover, it may be expected to be better when there is 
no Schwoebel effect, since then the second term of the right-hand side of equation (2.1) 
vanishes according to (2.3). 

Equation (2.4) may altematively be written as a relation between z’ = (Sz/6x) ,  = 
i/(ax/az), = - X I  and i = (axfaz), = i / x ’ :  

2 = ZZ’@(l/Z’). (2.5) 
From this expression one can deduce the decay rate U of the surface at a point 

characterized by a direction vector n = (n,,O,n,), with n, = - l / m .  Due to 
the geometry, the decay rate is given by U = i nz = x nx,  so that 

U=-2 f(n). JiTx“ (2.6) 

Thii equation shows that in the continuum limit the decay rate of the surface depends 
only on its local orientation. The problem of the decay or growth of a surface when its 
velocity is a function of the orientation has been investigated by Frank [4]. Frank proved 
that the points at the surface with a given normal orientation move on straight lines. Let 
us consider the initial profile of figure l(a). For a velocity given by equation (2.6), we can 
draw the polar plot r of the inverse of the velocity, as is shown in figure 2. From the curve 
(I?) we can deduce the further evolution of the profile. If we take a point P of the crystal 
where the normal is n, it determines a point M of (I‘) through OM//n .  Then Frank‘s 
theorem states that the point P moves on a straight line parallel to the normal n’ to (r) at 
M .  We will come back to this property later on. 

In order to test the validity of the continuum approximation, let us consider the initial 
profile of figure l(a), such that all initial terraces have the same width except the first one. 
If there is a total normal Schwoebel effect such that there is no interaction between a step 
and its upper terrace, that is q ( 2 )  = 0, then all steps will move at the same constant velocity, 
and therefore terrace widths will remain constant. In the other case, the interaction of the 
second step with a different one will induce a modification in the step velocity, and then 
the velocity of the steps will change in time and will be different from one to another. The 
continuum approximation is not sensitive to this qualitatively different behaviour induced by 
the Schwoebel effect. From equation (2.2), one sees that the function 4 ( x )  does not change 
qualitatively whether fpr(-x’) is zero or not. This effect will be studied quantitatively in 
the next section. 

3. Upper ledges at long times 

We are now concerned with the evolution of the simple profile already considered in section 
2. At the beginning, the distances 2 , .  lz, . . . are finite and equal. It will be shown self- 
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Figure 2. PmYs caIIsvuction: left-hand pan: cross section of the initial crystal (dashed curve) 
and of the actual one (full curve); right-hand pan: the surface generared by the point M defined 
by blM = n/v(n) . The point P of the crystal surface where the normal is n moves on the 
dotted straight line. parallel to the normal to r at M. On the left-hand side of the dotted line, 
the crystal is planar and parallel to its original orientation. Only the useful pan of the curve of 
M has been shown. Note the presence of a point M, at infinity. it corresponds to 1 + m and 
its abcissa is -1. corresponding to the formula ClM = -(i,l)/q(l), where q is given by (1.5). 

consistently that the distances go to infinity for long times. We take this as an ansatz to be 
proved later. For large values of 1, equations (1.2) and (1.3) read 

where A, A', A", C' and C" are given in appendix A. It is necessary to go to second order 
in exp(-a1) because. when D" goes to zero, A" and C" go to infinity while A goes to 
zero. A similar effect takes place when D' = 0. 

From (l.l), one obtains 

Combining equation (3.3) with (3.1) and (3.2), one obtains for n > 1 
(3.3) 

(3.4) 

(3.5) 
If C' and C" are finite, the terms in exp(-2~l) may be neglected in (3.5) for large 1. 

!,(t) = - In(B,t) (3.6) 

i - '  n - &+I - i" = -rpIu") - rpA6+1) + V I ( L 1 )  + r p d n ) .  

j - A (2 -uL+I - %-YLI - Cfe-&fa + cJe-&L-~ - cre-Zulm+i + ~ " ~ - 2 ~ 1 ~ )  " -  e 
and for n = 1: 

i, = A (2e-Kh + (C" - C')e-zKIl - C"e-zy12) , 

Then these equations turn out to have solutions of the form 
1 
K 

Indeed, insertion of (3.6) into (3.4) yields 
1 1 I 

while relations (3.6) and (3.5) yield 

-=-+- 
&+I BA ~ A K  

(3.7) 

1 1 _ = -  
Bz ~ A K '  (3.8) 
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From (3.7) and (3.8) one deduces 

(3.9) 

(3.10) 

The numerical solution (section 5) shows that the correct solution is the most symmetrical 
one, namely B I  = ~ K A ,  so that 

(3.11) 

Under total normal Schwoebel effect D" = 0, then qf = 0, as seen from (1.2). Then it 
follows from (3.3) that in = -qf(lnt,) + qt(1.) and, if all 1"'s are equal at the beginning, 
they remain equal, as expected. If total inverse Schwoebel effect is considered, D' = 0, 
then (0, = 0 as seen from (1.3), and for K I  >> 1 and KD < D": 

qi(l) = (p0 - FTo)tanh(Kl) E (p0 - Fro)(l -2e"). (3.12) 

In this case, expression (3.3) reduces to 

in = --Vl(M + Vl (L-1 )  

which has a solution similar to equation (3.11) 

ln(t) = -In - . ,f, (i) 

(3.13) 

(3.14) 

These logarithmic solutions correspond to a self-similar shape of the surface, since 
Inn(cut) = &(t)  for any value of the parameter W .  

4. Piecewise-linear approximation 

4.1. The approximation 

In this section we are interested in the ,evolution of the same profile as the one considered 
in the previous section, but we will focus our attention on the short-time evolution. We are 
again interested in solving equations (1.1) subject to the initial conditions (figure 1(a)) 

x, - x,-l = l(0) n 1 
x , - x o  = m  (4.1) 

with l(0) < 2 / ~ ,  so that the saturation regime has not been reached. Otherwise, the result 
of the previous section would apply. 

In order to solve the evolution equations, we will take advantage of the form of the 
hyperbolic tangent, which is approximated by the piecewise-linear function 

We will study the evolution of the initial profile equation (4.1) within the piecewise- 
linear approximation equation (4.2) in both the symmehic model and under total inverse 
Schwoebel effect. 
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4.2. Symmetric model 

1865 

In this case, when all in's are smaller than I / K ,  using the form of our initial conditions, 
(4.1), equations (1.1) read 

A K ~  

2 X - --(xn+l - xn--l) n > I n -  

(4.3) 

where A 
terms of the step widths, 

D(p0 - Fro). As usual, it is convenient to rewrite the evolution equations in 

The solution of equations (4.4). as derived in appendix B, is of the form 

(4.4) 

This solution shows that at the beginning the first step moves faster than the others, and 
the rest of the steps move progressively faster. 

However, the validity of equation (4.5) is restricted by the fact that in equation (4.3) we 
have assumed all in's to be smaller than I / K .  Thus, when the width of one step surpasses the 
characteristic length Z / K ,  this solution breaks down. The first step to fulfill this requirement 
is the first step, I ] ,  for a time t - 2 . 6 5 / A ~ ~ .  At longer times, (4.5) does not apply. 

4.3. Total inverse Schwoebel effect 

The piecewiselinear approximation will now be applied to the case rp, = 0 within the 
piecewise-linear approximation. Taking the initial conditions given by equation (4.1), as 
K D  << D”, the evolution equations read, at least for small times, 

XI = -AK 

x n -  -~-AK~(x, - x ~ - ~ )  
(4.6) n 2 2 .  

In terms of the widths, one can rewrite these equations as 

il = AK(I - K i l )  

in = AK~(I ,+ .~  - 1.) (4.7) 
n 2 2 

which, using as initial conditions equations (4.1), has a solution of the form 

(4.8) 
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In contrast with equation (4.3, this solution tums out to be valid for all times, because 
l.(t) 1 / ~  for all f and n, and therefore the regime of the previous section, valid in 
the symmetric model, is never achieved in the completely asymmetric one. However, its 
behaviour is qualitatively similar to the symmetric model. At short times the first step 
begins to move faster, while the others move at the same speed. After some time, the 
second step increases its velocity, separates from the following steps and approximates the 
first step, and so on. This behaviour is easily seen studying the difference between the 
width of two adjacent steps, 1, - &-I.  This difference shows a maximum at time t = n. 
However, the height of the peak decreases with increasing n, which means that this effect 
decreases quantitatively with n. 

5. Numerical results 

The nonlinear character of the evolution of the crystal shape, as shown by equation (l.l), 
makes it impossible to find a general analytic solution of the shape as a function of time. 
In the previous sections we have found such analytic expressions in different asymptotic 
limits. However, in order to study the evolution of the profile at any time, it is necessary 
to carry out a numerical study of the system (1.1). The results will enable us to check the 
different approximations introduced so far, both in the continuum and in the discrete cases. 

We have solved the differential set of equations (1.1) corresponding to the discrete 
model in the symmetric case, and initial conditions given by equation (4.1). We have used 
a fourth-order Runge-Kutta algorithm [ll]. We have considered a set of 200 steps. The 
neighbouring left-side step to our first step is considered to be at infinity. The rightmost 
one is assumed to move at constant speed, which is our boundary condition and means that 
the results are obtained in a reference system which moves with the initial slope of the 
steps. This boundary condition means that the terraces at the right of the last one have not 
changed their width si,hficantly. This will be true only for a certain time scale. As soon 
as the width of the rightmost terrace begins to evolve, our solution is wrong. From the 
analytic results of the previous sections, it may be argued that at f # 0 all terraces change 
their width. However, this change is extremely small and, as explained in the previous 
subsection, only the first ones change significantly, so that it takes some time until the 
terraces at the bottom change their width appreciably. This fact gives us an easy way to 
check the validity of the solution. It turns out that all relevant features, at least for the first 
terraces, take place during the time scale on which the numerical solutions subject to our 
boundary condition are valid. However, the numerical study at very short times is obscured 
by the discrete time step. 

The differential equations are solved for different values of the initial width, I(O), as 
well as different time steps, checking the stability of the solution against computatiodal 
artifacts. 

Figure 3 shows the profile at different times. Due to the fast increase in the width of 
the first steps with respect to the other steps, it is necessary to choose two different length 
scales in the vertical and horizontal axes. In the vertical axis we take the step height as the 
unit length, while in the horizontal axis K - ~  is considered to be the unit length. This is the 
reason why the initial profile appears as an almost vertical straight line. Moreover, ZAK* is 
the unit time throughout the numerical calculations. The curves are plotted every nine time 
steps, which corresponds to a plot every At = 0.01. 

We have also studied the behaviour of the surface at intermediate times. In this regime 
the numerical solution agrees with the expressions (3.6) in the symmetric model, and (3.14) 
in the total inverse Schwoebel model, supporting the symmetry argument we have employed 
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- 2 0 1 ~ .  I '  1 '  1 '  I '  1 '  1 '  ' 1 ,  I 
-550-300-250-200-150-100~-50 0 ~ 51 

displacement 

Figure 3. Snapshots of the evolution of the imtial profile shown in figure l(a) in the symmehic 
case. Profiles are drawn every 20 time units defined in the ext. no different scales have bem 
chosen in the axes, as explained in the text. The profile in the discrete symmehic case is shown 
to be in agreement with Frank's construction. Two equal slopes at different times are seen to 
be joined by a straight line, and different <!might lines converge at 0, the angular paint at M). 

0.5 0 I 

100 10' 102 '1 03 

time 

Figure 4. Width of the three fint tenaces as a function of time at long times. A, o and v 
correspond to the symmehic case, while o, and 0 correspond to the total invene Schwoebel 
effect. The logarithmic behaviour, the prefactor and the constant are recovered in both eases. 
The 1/2 diffemce in the slope is easily appreciated. 
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in order to derive such equations. In figure 4 we show the width of the first three terraces 
as a function of time, and both the logarithmic dependence and the numerical factors are 
recovered exactly after a short transient in both models. The difference in the slope is easily 
appreciated. This good matching with the analytic predictions is again in agreement with 
the idea that the solution (4.5) is valid for short times, but that the saturation regime is 
achieved in a few time units (in the above-mentioned units). 

We can compare the shape of the discrete model with the predictions of the continuum 
approximation. In figure 3 we have checked the validity of Frank's construction for the 
discrete model. We find that all lines joining points of the crystal surface, where the slope 
has a given value at different times, meet at a point 0, which turns out to be the angular 
point at f = 0. Thus all shapes are homothetic of a particular one, and the homothety centre 
is 0. 

Finally, in figure 5 the self-similarity of the profile is checked. Neglecting a short 
transient, one observes a perfect scaling of the whole profile. The continuum model predicts 
three scaling regions, corresponding to the two initial straight lines and the part of the profile 
that, due to the dynamics, has deviated significantly from the other two. Therefore, two 
different crossovers are expected. However, they are not readily observed numerically 
because of the finite time step which produces a spurious propagation front which blurres 
such a crossover. 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 

Figure 5. Self-similar@ of profiles of a crystal without Schwwbel effect. The cmssovers 
between the different regimes are blumd by numerical &facts. 

x/t 

6. Grooves 

In this section we consider the evaporation of a solid l i i t e d  by a periodic array of grooves 
(figure 6(a)). The sides of the grooves are assumed to be planar at the initial time t = 0. 
It is sufficient to study the evolution of a half period (figure 6(b)), which contains a time 
dependent number n-(r) of steps. The origin x = 0 will be chosen at the highest point, 
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supposed to be the left-hand side of the half- period.^ The steps will be labelled 1,2, . . . , n,, 
from the left to the right. 

Figure 6. (a) Initial profile of the surface studied in section 6. (b) Enlargement of the half- 
period inside the rectangle of figure 6(a). (c) The evaporation shape as would be predicted in 
the continuum approximation. (d) The real shape resulting from step bunching, not taking into 
account the step pairing occasionally observed in simulations. 

Only the symmetric case will be considered, so that the evolution of an isolated step is 
governed by equations (1.1) and (1.5). The two lowest steps of each period deserve special 
attention because they move in opposite directions, so that a facet appears at the lowest 
parts of the profile (figure 6(c)). Therefore, the position nm of the last step depends on 
time t. 

It may be of interest to rewrite the equations of motion for the uppermost and the lowest 
steps as 

& = -AK [Itanh (KY) + tanh(rxl)] (6.1) 

where L is the initial width of the groove. Two new features appear with respect to the 
evolution~of the profile studied in the previous sections. On one hand, the highest step will 
disappear after some time, and at that time it is necessary to update the x.’s and to replace 
nm by nmax - 1. A similar updating will take place every time X I  vanishes, until the last 
step disappears and the surface becomes perfectly smooth. On the other hand, since a facet 
appears at the bottom, the first term at the right-hand side of equation (6.2) becomes large. 
Therefore, the lowest step moves faster than the other steps and, after some time, it reaches 
the step just above it. Evaporation generates step bunching! Step bunching is frequently 
observed after growing or annealing crystals, and various explanations have been proposed. 
The present one, though very simple, seems to be new. 
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200.00 " ' ' '  ' , , , I  , ~ ~ '  , , ' , , , ' ,  , , , , , , ' ' , , ' 

N 

3 
X 

Figure 7. Snapshots of the evolution of the initial profile shown in figure I(=). Profiles are 
drawn every ten time units defined in the text Two different scales have been chosen in the 
axes, as explained in the text. 

When the lowest step has reached the next one, equation (6.2) should be modified, 
because the step positions should satisfy the conditions x, > x,-l, The new equation may 
be found if one assumes, following BCF, that steps (whether forming bunches or not) are in 
equilibrium with the bulk. This results from the assumption that the motion of atoms along 
steps requires lower activation energies than atom detachment from steps. It follows that 
the chemical potential on the lowest terrace (the broad one) near a step should be the bulk 
chemical potential, and that the adatom density on the lowest terrace near a step should be 
the equilibrium adatom density, just as in the case of a single step. On the other hand, the 
adatom density p ( x )  satisfies the diffusion equation (A.l) (see appendix) independently of 
the number p of steps in the bunch which limits the lowest terrace. Since the boundary 
condition is also independent of p ,  p ( x )  is independent of p .  Therefore the current at the 
right-hand side of the lowest step, which is the gradient of p ,  is also independent of p ,  and 
therefore it is given by tanh(r(L/Z - xnmJ).  On the other hand, the current to the left of 
the highest step in the lower bunch is tanh(K(xnmx-, - xn,-,+l)/2) independently of p .  
There is a current of atoms inside the bunch, the effect of which is to maintain the chemical 
potential uniform within the bunch. It is seen that the current fmm the lowest step is larger 
than from the highest one. This ensures the stability of the bunch, i.e. its highest step does 
not move faster than the lowest one. Therefore all velocities within the bunch are the same: 

x,,,, = -- AK [tanh (K (: - xnmm))  + tanh - 2 xnmu-r+l)] . 
P 

(6.3) 

If bunches of szeps appear at places other than the bottom of the profile, equation (1.1) 
should be modified and replaced by an equation similar to (6.3). However, no large bunches 
have been observed in the numerical solution of  the equations, so that the resulting profile 
is essentially the one represented in figure 6(4. If a bunch appears, it is necessary to check 
its stability. As said above, a bunch is stable if the current from its lowest step is larger 
than the current from its highest step. Thus, the condition for a bunch of p steps to be 
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stable if its highest step is step m is 

We have performed a numerical study of the evolution for the profile shown in 
figure 6(a), with 1(0) = 0 . 1 ~ .  Initially, the highest and lowest terraces are twice as broad 
as the others. Figure 7 depicts the profile at different times during evaporation. The top 
of the profile remains linear while, at the bottom, a bunch appears as expected. At the 
beginning, this bunch grows, but, in our calculations, it reaches a maximal size after some 
time. This size is reached  when^ the width of the lowest terrace becomes of order I/K so 
that further increase of that width does not produce a further increase of the current from 
the lowest step. Thus, according to (6.3) the velocity of the bunch is of order l/p. This K 

velocity should be about the same as that of the next step, which is of order 1. Therefore, 
the number p of steps in the bunch is given by p = 1/(1(0)~). After the bunch has reached 
its maximal size, the pairing of steps is observed. We explain the formation of a step pair 
just above the bottom bunch as follows. Immediately after reaching saturation, the bunch 
can have (because of the high p value in equation (6.3)) a velocity smaller than the next 
step. Therefore, this step will move at a higher velocity than the others and will form a pair 
of steps with the next one. The formation of the other step pairs are presumably of similar 
origin. Step pairing is not always observed and depends on the initial conditions. 

It is easily deduced from the above arguments that, if the initial width is larger than 
I/K, no bunches are observed. 

It is interesting to compare our results (figures 6 and 7) with what might be.expected 
from the continuum approximation. For the sake of simplicity and because it corresponds to 
usual experiments, only the case 1 << 1 / ~  will be addressed. Then, equation (2.5) reduces 
to 

(6.5) 2 i = AK 

so that evaporation just translates the profile downwards. However, the lowest terrace does, 
not evaporate, so that the resulting profile is essentially that of figure 6(c). A similar 
conclusion would be obtained from Frank's construction. The continuum approximation 
fails to predict the bunches observed in figures 6(d) and 7. As in the previous sections, the 
failure of the continuum approximation is related to the existence of angular points, namely 
those at the bottom of figure 6(c). However, in the profile studied in the previous sections, 
the initial angular point became smooth, and therefore Frank's construction applied at later 
times; while in the sawtooth profile of figure 6, the angular points remain and even give 
rise to facets which are unexpected in the continuum approximation. 

We have also studied the evolution of initially sinusoidal profiles or other differentiable 
profiles (figure 8(a) and 8(b)). The main new feature is that an angular point appears at the 
top if the upper terrace is broader than I / ~ , ( f i g t ~ e  8(a)). The reason is the saturation effect 
associated with the hyperbolic tangent in (1.5): the top of the profile does not evaporate while 
the remainder of the surface follows equation (6.5). This angular point will nevertheless 
not be observed in most of real materials because large surface adlacunes (not taken into 
account in the present model) will be nucleated. 

We have also made preliminary studies of the evolution of periodic profiles with the 
Schwoebel effect, The situation is rather complicated because of instabilities, reminiscent 
of those found by Kandel and Weeks [12] in a model combining an extreme Schwoebel 
effect, growth and impurities. 
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Figure 8. Snapshots of the evolution of an initial parabolic profile. (a) Evolution when initially 
all terraces are smaller than Ilx. (b) Evolution when initially the top tenaces are l q e r  than 
I l x  and the bottom ones smaller than this value. 

I .  Conelusion 

We have studied the evaporation of a crystal within the Burton-Cabrera-Frankmodel in two 
cases: (i) when the surface is limited by two planes, one of them having a high-symmetry 
orientation (figure I(a)); (ii) for a 'grooved' surface (figure 6). We have paid attention to 
the Schwoebel effect (asymmetry of the sticking coefficient) and to the validity of Frank's 
theorem, based on the continuum approximation. However, we have not investigated cases 
where the instabilities described by Schwoebel [6] and by Kandel and Weeks [I21 occur. 

In the case of a comer (figure l(a)), Frank's construction can only predict the evolution 
of the crystal above a particular plane n, and below another plane n', but not between the 
two planes. Our numerical solution shows a rounding of the comer and an evolution of the 
profile towards a self-similar shape. We have also shown that the distance between upper 
ledges diverges logarithmically with time except in the case of a total normal Schwoebel 
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effect. This divergence wouldn't occur if the continuum approximation were exact. An 
approximate form of the equation of motion. has also been investigated, which allows an 
exact solution. 

In the case of a grooved surface, the bottom of the grooves is found to flatten, but their 
edges become steeper due to step bunching. The mechanism responsible for this effect is a 
very simple one: however, it cannot be deduced from the continuum approximation. 

The present work can help to understand the formation of defects during annealing of 
crystal surfaces. However, direct comparison with experiment is not possible because, in 
the present work, steps are assumed to be straight, and dislocations are neglected. This is 
only correct for small length scales, usually around 0.01 cm or less. We have also ignored 
the effect of vacancies, which are certainly important near the melting point of elements 
[9 ] ,  and can even suppress the saturation effect appearing in formula (1.5) when ~1 > 1. 
Note that this saturation effect has been observed experimentally in some materials, as for 
example did Keller in NaCl [13]. Neglecting vacancies is only correct if terrace sizes are 
small. A quantitative discussion has been given in [14]. 

It is interesting to compare our results with those reported by Stoyanov 181 for a stepped 
surface in which an external force acts on the adatoms. In that case, bunch formation is 
predicted when " ( 1 )  = rp,(l) - f,q(l) is positive for a terrace wider than its neighbouring 
terraces, of width 1. The sign of " ( 1 )  depends on the direction~of the external force. In 
ow case, for an initial surface given by figure l(a), Y(1) is positive in the case of inverse 
Schwoebel effect. Bunches have not been observed because they will develop above the 
terrace which is larger than its neighbouring ones. In our case, these would correspond to 
terraces on the top of our first terrace and have not been considered in the analysis. As 
regards bunch formation in grooves, it is observed even in the symmetric case, although 
~ ~ ( 1 )  = rpl(I), because Y(1) is always positive for the terrace at the bottom. 
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Appendix A. Velocity of the steps with Schwoebel effect 

In this appendix we derive the expression for the step velocity as sketched in section 1. If 
the diffusion process of adatoms on the surface is much faster than the motion of steps, as 
supposed by BCF [3], the adatoms reach a stationary state during the motion of the steps and 
the velocity of the step is related to the flux of such an adatom density. Then, we should 
determine the density profile on the terraces in order to calculate the step velocity. 

Between two steps, the adatom density pn(x) satisfies the following equation: 

where the first term on the right-hand side corresponds to diffusion, the second one to 
evaporation and the third one to deposition. In the present article, F is taken to be zero. 

The boundary conditions at the steps are the following ones, which state the equality of 
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two expressions of the current density j ( x ) :  

" x )  (x  = x ,  - E )  (A.2) 

(A.3) 

a p m  
ax 

apn(x) 
ax 

- j ( x )  = D-  = D"po - D"p ( 

- j ( ~ )  = D-  = D'po - D ' ~ , ( x )  ( X  = X.-I + E )  

where 6 denotes a small quantity. D'po and D"p0 are the current of adatoms detaching 
from both sides of the step. These values are imposed by detailed balance. 

Diffusion is usually much faster than step motion, so that the left-hand side of (A.l) may 
be replaced by zero. It is then straightforward to calculate pn (x), and to deduce the current 
density on both sides of each step using equations (A.2) and (A.3), which are precisely 9, 
and pr.  Equations (1.2) and (1.3) are therefore easily deduced after some algebra. 

When E is large, the second-order expansion of (1.2) and (1.3) in powers of exp(-KI) 
is given by equations (3.1) and (3.2), where 

A ' = 1 + y  K D  
D 

and A" and C" are obtained by interchanging D' and D" in (AS) and (A.6), respectively. 

Appendix B. Short-time symmetric case profile 

In this appendix we derive equations (4.3, starting from the approximate terrace-width 
evolution equations (4.4). Using vector notation these are rewritten in the more convenient 
form 

@ . U  li(t)) = f A ~ ' Y l l ( t ) )  + AKII) 

with the vector li(t)) being 

lict,) = [; 1 
EN@) 

and where we have introduced 

( .o. J o o o 1 o ... J 
... _. .  ... ... ... ... 

The formal solution of (B.1) is easily checked to be 
2 

[ r ( t ) )  =e" (~(0))  + ~ K - ' Y - ' I ~ ) )  - -Y-'II) 
K 

(B.4) 
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with S2 = ~ A K ~ Y .  
In order to find an explicit solution to equation (B.4). we should decompose the matrix 

Y in eigenvectors, so that the exponential en' can be diagonalized. To this end, we introduce 
the vectors 

. . . . .  . . . . .  e-iNk 1 03.5) (kl = ( 1, e-", e-xk e-ink 

with n a natural number, n = 0, 1, .... N .  We can now construct the eigenvectors of Y, 
which is a finite Tceplitz matrix, as an appropriate combination of Ik). It is readily checked 
that 

(eiklk) +e-jkIn - k)) (B.6) [ k )  - m 
are such vectors if N is an odd number, and k takes the values k = w, j = 
- N ,  .... N + 1. The corresponding  eigenvalues are -2isin(k). Then, the exponential, 
in terms of these eigenvectors, has the form 

1 

Ik)(kl. (B.7) efAvZrY = e-iAu'tsin(k) 

k 

We should now express the exponential in real space. To this end, we have to evaluate 
the action of the operator on vectors In), which has its nth component equal to 1, and the 
rest of them equal to zero. Using the fact that 

one can determine the value of the exponential acting on such vectors 
(nleiAK2tY Im) = e-iAKzrsin(k) (nlk)(klm) 

k 

As we are interested in the situation where there is a large number of terraces, and then 
the behaviour of the system will not be very sensitive on the specific value of N, which is 
large, one can approximate the sums in equation (B.9) by integrals 

Then, using the equality 

with J&) being the Bessel function of order n,  one determines the value of equation (B.lO), 
namely 

(B.12) 
which enables us to write down the expression of the exponential in real space 

(nl exp(AK2rY/2)lm) = Jn-dA~' t )  + (-1)"+1Ja+m(AK2t) 

. . . . . .  

. . . . . .  
(B.13) 

. J o + J z  - J , - J 3  J z + J 4  - 5 3 - J 5  

J t + J 3  J o - J ~  - J , + J s  5 2 - 5 6  
.Jz  + J4 J I  - J5 JQ + 56 -J I  - J, 
J , + J s  J z - J s  J I + J ~  J o - J s  . . . . . .  

. . . . . .  

... ... ... . . . . . .  
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where all the Bessel functions have an argument equal to AKZt. 
On the other hand, when applying Y on Il(t)), the formal solution (B.4) is expressed by 

Now, applying expression (B.13) for the matrix to equation (B.14). we finally arrive at 
expressions (4.5) for the terrace widths as a function of time and the number of the terrace, 
once the initial terrace width is known. 
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